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Abstract

We study the limiting behaviour of large systems of two types of Brownian particles
undergoing bisexual branching. Particles of each type generate individuals of both types,
and the respective branching law is asymptotically critical for the two-dimensional system,
while being subcritical for each individual population.

The main result of the paper is that the limiting behaviour of suitably scaled sums and
differences of the two populations is given by a pair of measure and distribution valued
processes which, together, determine the limit behaviours of the individual populations.

Our proofs are based on the martingale problem approach to general state space processes.
The fact that our limit involves both measure and distribution valued processes requires the
development of some new methodologies of independent interest.
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Introduction

In this paper we shall study the limiting behaviour of large systems of two populations of
Brownian particles undergoing bisexual branching. As an example, consider the following
system:

Assume that, at time t = 0, n > 1 particles of two types (type 1 and type 2) are located
in Rd and begin moving as independent Brownian motions. Each particle of type i, i = 1,2,
dies, independently of the others, after an exponential time with mean 1/n. Assume that,
at the time of death, each particle is replaced, on average, by one particle of each type,
with overall probability 1, and, with probability 1, by nothing. The replacement particles, ifthere are any, perform independent Brownian motions starting at the point of death of their

parents, and this story of diffusion and (critical) branching continues until, with probability
one, there are no particles left.

Let Z~n)(t, .) be the measure valued processes describing the positions of the particles at
time t. That is, let

ZIN(t, A) = Number of particles of type i in A at time t.

Our interest lies in establishing the joint behaviour of the Z(")(t) in the infinite density,
n --+ oo, limit.

This problem, in the absence of particle motion, has already been studied by Kurtz [5].
The addition of the particle motion, however, makes the problem considerably more complex,
and rather interesting.

In order to describe a typical result, define the following two, rescaled, processes.
Z()t + -~)Zn() ~)t

x(")(t) = I, 2M Y("(t) 1=
n n

We shall study the limiting behaviour of X(n) and y(n) as n --+ 00. This, clearly, will tell
us about the limiting behaviour of the ZI!n. What we shall find is that while X(') has an
interesting nontrivial limit, y(n) converges to zero. That is, in the infinite density limit the
proportions of particles of each type are identical.

This, naturally, leads one to try to re-rescale the difference y(n), so as to obtain a fluc-
tuation result describing the rate at which balance between the two populations is achieved.
It turns out that this is best done via a third process, defined by

W(n)(t) = y(")(t) + J nY(n)(s)ds.

We shall show that WOn has a nice limit, as n -. oo, as a (Schwartz) distribution valued
process, and that the convergence is joint with that of X(n).

The main result of the paper, Theorem 3.3, gives the details of this convergence, under
a more general setup than that just described.

Since our study involves both measure and distribution-valued processes we shall, un-
fortunately, need to start with some technical results about weak convergence for measure
cross distribution valued processes. Some of these results should be of independent interest.
This is Section 1 of the paper.



In Section 2 we begin describing our system in detail, and describe also the previous
result of Kurtz [5] noted above. Section 3 contains the main result of the paper, and Section
4 is devoted to proofs. There is an appendix containing the proof of the existence and
uniqueness of the solution a particular non-linear evolution equation which is used in the
proofs of Section 4.

1 Preliminaries, weak convergence

In this section we give a brief introduction to the martingale problem approach to general
state space process. We start with some notation and definitions. Let E be topological space,
B(E) (- (E)) be the set of bounded (bounded continuous) Borel measurable functions on E.
Denote by 5(E) the a-algebra of Borel subsets of E and by P (E) the set of Borel probability
measures on E. Let A be subset (not necessary linear) of B(E) x B(E).

Definition 1.1 By a solution of the martingale problem for A we mean a measurable stochas-
tic process X with values in E defined on some probability space (l,.",P), such that for each
(f,g) E A the process

(1.1) f (X(t)) - jg (X(s)) ds

is a martingale with respect to the filtration

FiX = FX V (r h(X(u)) du : s < t, h E B(E))

where F•x _= (X(s) : s < t).

Note that if X is a right continuous process then Xi -

Definition 1.2 When an initial distribution p E P (E) is specified, we say that a solu-
tion of the martingale problem for A is a solution of the martingale problem for (A, p) if
PX(O)-1 = P.

Let {•Ft} be a complete filtration. Let L be the space of progressive (i.e. {Yt}-progressive)
processes Y such that supt>0 E [IY(t)lJ < oo. Set

(1.2) IIYII = sup E [IY(t)I].
t>o

We do not distinguish between £ and the Banach space of equivalence classes in £, deter-
mined by the norm (1.2). ( X - Y if JJX - YII = 0 ). We define the semigroup of operators
J(s) on L by

(1.3) (J(s)Y) (t) = E [Y(t + s)IY"'j.

Define

(1.4) A= (YZ) E £ x £: Y(t)- jZ(s)ds is Yt-martingale.
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.4 is called the full generator of J(s).
Let g(DE[0, oo)) be the a-algebra generated by the simple cylindrical subsets of DE[0, oo);

i.e.

Q(DE[0, 00)) = a ((7rt, ..... .) (t(E)) m  It -,. ,t, E [0, oo), m E A()

where for points tI, t 2 ,... tm in R+, the projection r',j .tm2,.-: DE[0, 00) -- Em is defined
by

lrt,. 2 ... ,(T) = (X(tl),x(t2 ), .-. . , x(t,,)) , Vx E DE[O, oo).

When

(1.5) 9 (DE[0, oo)) = 13(DE[0, oo))

we shall say that E has equivalent Borel and cylindrical a-algebras.
We now give an analogue of the Theorem 4.8.10 [5] without the assumption that the

space E is metric. The result will be crucial for our later needs, as our main result will,
ultimately, follow directly by checking that the conditions of this result are satisfied.

Theorem 1.3 Let (E, T) be a completely regular topological space with equivalent Borel and
cylinder a-algebras on DE[0, oo). For each n > 1 let {I.Y} be a complete filtration, and
let A C "C(E) x -C(E) and v E P (E). Suppose Xn, n = 1,2,..., is a .ýt-adapted process
with sample paths in DE[0, 00), {X,} is relatively compact, and PX,(O)-1 

', v, as n ---, 00.
Suppose furthermore that for each (f, h) E A and T > 0, there exist (ý.,,) E A,., (where
An is defined as at (1.4) but for Ftn martingales), such that the following three conditions
hold:

(1.6) sup supE[Kn(s)J] < 00,
"n _<T

(1.7) supsupE[1(p,(s)l] < 00,
n s<T

(1.8) limE [R,,(s) - f (Xn(t))I] = limE [l,,(s) - h (X,,(t))Il = 0.
ntoo nlJoo

Then

(a) Each limit point of {X,} is a solution of the DE[O, 00) martingale problem for (A, v).

(b) If, in addition, we assume that the DE[0, 0o) martingale problem for (A, v) has at most
one solution, then X,, := X, as n -.- oo, where X is the unique solution in DE[0, 00)
of the martingale problem for (A, v).

Proof The proof that each limit point of {X,} is a solution of the martingale problem for
(A, v,) will be analogous to the proof of Theorem 4.8.10 [5].

Let Y be a limit point of {X,}. Let (f, h) E A and T > 0, and let (G,,, ý,n) satisfy condi-
tions (1.6- 1.8). Let k >0, 0 tI <tt 2 < ... <tk <t < t+s< T. Since (n,V) E A,,, it
follows that

.9)E [(Wt + S) - (t) - 1 cP~(u)du) J.Ihi (X.(t1 ))] = 0,
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for all hl,... .,hk E B(E), n EN, which implies thatE( is p.u-(,())u]h(,t
E [.(t + s) - f (X.(t + s)) - ((t) y- (X.ct))) - it+S - h (X.(u)) du) h (X.(t,))

+E [(f(x.(t+s))-f(X.(t)) - j h(X,,(u)),du llh,(X,(t,)) =0, V-n.

Taking into account condition (1.8), and that hl,.., ,hk E B(E), we have that

(1.10) lime f(X.(t + s)) - f (X(t)) - ih(X(u))du) h,(X.(t,))=0

and hence

(1.11) E [(f (Y(t + s)) - f (Y(t)) - jh (Y(u)) du) kh,(Y(t,))j0.

Si=1

Thus we have that Y is a solution of the martingale problem for (A, v), and part (a) is
proved.

By (a) and (b) we have that the martingale problem for (A, v) has a unique solution.
This means that the finite-dimensional distributions of all limit points of {X,} coincide.
Since the Borel and cylinder a-algebras are equivalent, the finite-dimensional distributions
determine the probability measure on DE[O, oo). By this argument, together with relative
compactness, we get that each subsequence of {X,} contains a further subsequence which
converges to the unique solution of the martingale problem for (A, v). By Theorem 2.3 [2]
we are done. 0

In order to apply (b) of Theorem 1.3 we need to know how to determine uniqueness for
solutions of martingale problems for processes with values in arbitrary topological spaces.

Theorem 1.4 Let (E,r) be an arbitrary topological space, and let A C B(E) x B(E).
Suppose that for each P E P (E) any two solutions X, Y of the martingale problem for
(A,pi) have the same one-dimensional distributions; i.e. for each t > 0

(1.12) P {X(t) E F} = P {Y(t) E F}, r E B(E).

Then any two solutions of the martingale problem for (A, p) have the same finite-dimensional
distributions; i.e. (1.12) implies uniqueness on the cylinder a-algebra. If X is a solution of
the martingale problem for (A, p) with respect to the filtration Ft, then

(1.13) E [f (X(s + t)) lY.] = E [f (X(s + t)) JX(s)]

for all f E B(E) and s, t > O.

Proof The proof is completely analogous to the proof of Theorem 4.4.2 of [5].

Corollary 1.5 Let (E, r) be a completely regular topological space with equivalent Borel and
cylinder a-algebras on DE[O, oo). Let A E B(E) x B(E). Suppose that for each P E P (E)
any two solutions X, Y of the martingale problem for (A, t) with sample paths in DE[0, oo)
satisfy (1.12) for each t > 0. Then, for each u E 'P(E), any two solutions of the martingale
problem for (A,pu) with sample paths in DE[O, oo) have the same distributions on DE[O, o0).
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Proof The fact that X and Y have the same finite-dimensional distributions is a part of
Theorem 1.4. Since the Borel and cylinder a-algebras are equivalent the finite-dimensional
distributions of X and Y determine their distributions on DE[O, oo), and we are done. I

Let MF(Rd) denote the space of finite measures on (Rd, B(Rd)) endowed with the topology
of weak convergence. For u E MF(Ra) and f E ?C(Rd), let

(1.14) (fU) =fdp.

Denote by S(Rd) the (Schwartz) space of rapidly decreasing functions on Rd, and by
S'(Rd) the topological dual of S(Rd), the space of tempered distributions. We endow S'(Rd)
with the strong topology.

For reasons that will become clear later we now need to study stochastic processes taking
values in MF(Rd) x SR Rd). For simplicity denote MF(Rd) x S'(R d) by MF x S'. Recall that
in the theory of weak convergence of processes in DE[O, oo), where E is complete separable
metric space, the basic equivalence (1.5) between the Borel and cylindrical a-algebras is of
crucial importance. It is not, however, clear that it carries over to the case of E = MF x S',
which is what we shall require. The general problem of determining which spaces E do possess
equivalent Borel and cylindrical a-algebras has been studied in some detail by Jakubowski [7].
Following his techniques, we shall establish

Theorem 1.6 The space DMFXS,[O, oo) has equivalent Borel and cylinder a-algebras.

Before the proof of this Theorem we note the following lemma from [7].

Lenuma 1.7 (i) Suppose that the completely regular topological space (E, 7) has the fol-
lowing two properties:

(1) Compact subsets of E are metrizable.

(2) There exists a sequence of {Kj} of compact subsets of E such that for every
z E DE[O, 1] one can find If,, containing the set i = {x(t)It E [0, 1j}.

Then

(1.15) Q(DE[O, 1]) = 13(DE[0, 1]).

(ii) If a completely regular linear topological space E satisfies (1. 15) it also satisfies (1.5).

Proof of Theorem 1.6 First let us prove that MF x S' generates equivalent Borel and
cylinder a-algebras for DMFX s,[O, 1].

We know that MF is a separable metric space, hence it is homeomorphic to a subset of R'.
The space R has the properties (1) and (2) from Lemma 1.7, and by Proposition 5.3 [7] S' also
satisfies these conditions. Hence by Corollary 2.8 [7] Roo x S' has the property (1.15) and
by Theorem 2.1 [7] A x S' also has this property for each subset A of R-°. By Jakubowski's
Theorem 1.3 the topology on DE[O, 1] depends only on the topology r on E, consequently
the property (1.15) is preserved under homeomorphism. Thus, by a homeomorphism of MF
to some subset of ROO, we have that (1.15) is satisfied by MF x S' and hence by part (ii) of
Lemma 1.7 DMFxs,[O, oo) has equivalent Borel and cylinder a-algebras, as required. U

We need some additional properties of the space MF x S'.
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Lemma 1.8 (i)

B(mF X S') = B1(MF) X B(S').

(ii) Let N, C "C(MF) and N2 C -C(S') be separating for P (MF) and P (S') respectively.
Then

N = {Jff2 f: E N, U 1, f2 E N 2 U 1}

is separating for P (AiF x S').

Proof (i) It is sufficient to show that

(1.16) B(MF x S') C B(MF) x B(S').

Let A be a Borel subset of MF x S'. By Proposition 5.3 [7] we have that

(1.17) A= U Anf(MF x K,),
nEiAr

where Kn are compact in S' and metrizable. Each compact metric space is separable, and
M.F is a separable metric space, hence by [2], p.225 we have that

(1.18) B(MF X K,,) = B(MF) x B((K,,), Vn.

From the definition of the relative topology in MF x 1i, we have

(1.19) B(MF xK,,) a (Bfn(MFx K,), BE r)

S{B n(MF x K,,), B E B(MF x S')},

where r is the topology on MF x S', and the last equality follows by [3], Theorem 10.1. By
choice, A E B(MF x S'), and so

A n (MF x K,,) E B (MF x K,,). DTIC QUA'LITY fISTy.E 5

Thus, by (1.18),

A fn (MF x K,,) E B(MF) x B (If,,). NrTs CRA&I

By the same arguments as in (1.19) we get D1C TAU

B (K,) = {B n K,, BE B(S')}, '.

so that

B(K,,) c B(S'), Vn, n ,.

and ..

A n (MF x K,,) E B(MF) x B(S'), Vn.

6 .



By (1.17) we obtain

A E B(MF) x B(S'),

and we are done.
(ii) The proof of this part is completely analogous to that of Proposition 3.4.6 [5]. 1

Let C1(Rd) denote the set of continuous functions with limit at infinity. In general, if F
is a set of functions on Rd, write F+ for {f E F : infRd f(x) > 0}.

Corollary 1.9 The set of functions

{F E C(MF X S'): F,,2 (/11,,4 2) =Eexp {(fl,•)+ i (h2 , 2)}},

where fi E C1(Rd)+, and f2 E S(Rd), is separating on P (MF x S').

Proof By [4], Theorem 3.2.6, the set of functions {exp {(f, .)}, f E C1(Rd)+} is separating
on P (MF). By [6], Theorem 3.2, the probability law of X, where X is a random distribution,
is uniquely determined by the characteristic functional

Cx(f) = E[exp{i (f,X)}], f E S(Rd),

and hence the set of functions exp {i (f2, -)} is separating on P (S'). The result then follows
by Lemma 1.8, in spite of the fact that 1 V {exp {(f, .)}, f E C1(Rd)+}, since there exists
{f,,} E C1(Rd)+, such that

(1.20) bp-lim exp{(f,.}= 1.

2 Bisexual branching without diffusion
In th;s section we shall, briefly, describe some results of Kurtz [5], which correspond to a
generalization of the bisexual branching system described in the Introduction, but for which
the "particles" perform no motion. In the following section we shall extend this model to
the one of interest to us, but it is worthwhile, at this stage, to look at the simpler case.

Kurtz [5] considered a system made up of two types of particles. Each particle lives for
an exponentially distributed lifetime with parameter A, or A2, depending on its type. If a
type 1 particle dies it gives rise to offspring of types 1 and 2 with the number of offspring
distributed as (3y',3'2). Similarly, if a type 2 particle dies, it gives rise to offspring of both
types distributed as (01, 02). Assume that E[-yts] < oo, E[0k] < oo, i = 1,2. Define

mij = E [-tj], m2j =- E [0j)], j = 1, 2.

Let Z, be the number of type j particles alive at time t, and set

(2.1) Z(t) = (Zc(t), Z2(t)), t > 0.
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Then Z is is a two-type Markov branching process. We shall assume that the process
is critical and mr, > 0 for all i,j = 1,2. This implies that there exist vectors (VI,v 2) and

(61, 2) and a real number q > 0 satisfying

(2.2) A(m/ m- 1) AIM 12  ) I( =0,
,A2m21 A2(m•22- I1 ) (V2) =

(2.2) Ai(ran - 1) AInM12 7 7

A2M21 I2.3

Taking vI, V2 > 0 and 61 and 62 will have opposite signs. Kurtz considers a sequence of
processes {( , Z')} with initial population sizes (ZI-(0), Z2)(0)) = ([nzi], [nz•2 ), where
(z1,z 2) are fixed. Set

Z ,) + 2n
(2.4) x(n)(t) = IZ (r.) + V2 ,(nt)

n

ý j Z [ (n t) + Z "( , )
(2.5) y(n)(t) - I(nt)+

n

Then both X(n)(t) and Y(n)(t) exp {nit} are martingales [1]. We are interested in the limiting
behaviour of X(n)(t) and Y(n)(t) as n -- oo. As might be expected from the fact that
Y(")(t) exp{nrjt} is a martingale, Y(n)(t) converges to zero as n --+ oo, and so

Z•")(nt) • 2X(")(t) Z•n)(nt) _ _X(")(t)

n V16 - V26 n V26 - V16'

Thus we have the rather surprising result that the limiting behaviour of X(n) gives the
limiting behaviour of both ZI *(nt)/n and Z•")(nt)/n for t > 0.

The limiting behaviour of y((n) is somewhat more delicate, and is best described in terms
of a new process W(") defined by

W(n)(t) = Y(n)(t) + j0 nitY(C)(s) ds.

To state Kurtz's main theorem we require the random variables

(2.6)

and the parameters a!. = E[jiji] and a? - E[i;qwk. Then Kurtz [8] proved

Theorem 2.1 (a) The sequence {(X(n), W(n))} converges in distribution to a R2-valued
diffusion (X, W) with generator

(2.7) A f(x, w) = x (alif..(x, w) + 2aI2f,,.(X, w) + a2f.L,.(X, w))
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where a:, = (A1l 2al, - A 2 ~da)/(VI62 -6V)

(b) For each T > 0,

sup jY(")(t) - Y(n)(0) exp{-nr7t}l --- 0, in probability, as n --+ 00.
t<T

Consequently, for 0 < ti < t2, it follows that f,,2 ntqY(n)(s) ds converges in distribution to
W(t 2 ) - W(ti) as n --+ oo.

Our aim now is to add diffusion into the above model, and obtain a version of Theorem
2.1 incorporating the spatial motion.

3 Bisexual branching with diffusion

We start with a "typical" situation. Assume that at time t = 0 we have a number of particles
of types 1 and 2 scattered throughout Rd, which begin diffusing as independent Brownian
motions with generators !A. Each particle of type i, i = 1,2, dies, independently of the
others, after an exponential time with parameter Ai. Let pkI be the probability that at death
a particle of type i produces k offspring of type 1 and 1 offspring of type 2. For Borel A C Rd,
set

Zi(t, A) = Number of particles of type i in the set A at time t.

Then Zi(t) E MF for all t > 0. Consider the vector measure-valued process

Z(t) = (Z1 (t), Z2(t)),

adapted to the filtration

=o (2 s: s < t).

We write

(3.1) zi(t) - Zi(t, Rd), i= 1,2,

to denote the total mass processes, essentially equivalent to the population processes dis-
cussed in the previous section.

Take now a sequence I("l(t) = (Z•'0(t), Z21)(t)) of such processes with death inten-,iie \() ln(n) m2(n)
sities 2 4(), and offspring distributions -kt ,kI , adapted to the filtrations 1Y =
or (2(n) (S) S < t).-

Let ( ,72(n))T have joint distribution p'k and ( n) have joint distribution
2(n) Set

(n) E [7, (n)] n)

9



(nn)
Let (v ),v47))T, (• -),n))T denote eigenvectors corresponding to the eigenvalues 77"1

-72") of the matrix AN, where

-(n 1M~) AMn)M~n)" 1 "ll"1 " 12

(3.2) A rn)M(n) An"()m()-

Then we make the following regularity assumptions:

(3.3) 0<m()<1, Vn, 0<mij -r limm() <1, 1,2,

AN) A(n)
(3.4) n") >0, i =1,2, Vin, either lim - 2- or lim--3-- exists, limAP)= -o, i= 1.2.

n 1,, A () nTooA(n) nTooI
1 2

(3.5) liN - N) (mN) - 0)- mfl rf2l] 0

(3.6 ) (( ) -) ( ( M I) I 2 12) 2 0

nbo ) A'")(1 - m'(") + A•~(1 - m..()•

(3.7)sup E<cc, sup E [1b n)) ] <ooc,
gn )

Simple but tedious calculations show that
In _M( (n) ((mn) ) (()

(3.9) -/" ((r-1 1 -r-1(rnrn2 1)-+ o(1)

A2 "HI 22 -- 21 M211

(3.10) s - Au(I - rnp) + sup h)(1 -[(r) +

Set

n no(3.11) sup A limro, = , 2
n no

Under conditions (3.3) - (3.6) we obtain that [ <cc.

Despite the heavy notation above, things are are not as difficult as they seem. For
example, if we return to the example of the Introduction, then we have A(") - _ = n

"(n) 1- 2• 11 ( 2212 2

and m(.• = 1/2, i,j = 1,2. It then follows that + - 0, ) = n and we can take

(n 1,)"l _ andMd = 1 A=1 for eachn > 0.

The following technical lemma follows via straightforward algebra.

10



Lemma 3.1 Under conditions (3.3) - (3.6) there exists a finite N > I and eigentvectors
(z4) ,V (•n), ,I)) such that

(3.12) inf > 0,
n>N i>0

(3.13) ýn)< 0, (n) > 0, V n>N, liraNn <(
1 2 - ~nToo <00

-- (-ý() ()ýn

(3.14) lim 1 1,).n 2 2 1)1(>) 0

nToo

Remark 3.2 Without loss of generality we shall, henceforth, assume that N = 1 in (3.12).

As in the case of Kurtz's simpler model, we need to define a few more additional random
variables and coefficients before we can state our main result:

n V- v)(-ý,(n) + V n) 2 (n, )- 1) + )'n

(3.15) ' )(n) - 1), ( n),O,)) + (")(,,(n) - 1).

) .(n) {) ý (n ,,() A(,n)ý(n )a 2n)

_(n) 1 2 a j 21 -ij

(3.16) nfa( ( -2 2 l1 )

~.a~j') Er-,,-,] 2( E [•/Qk7] ,i,j =1,.a!• (n) E ) [ ! j ai 2 =_ E i, 1, 2.

Assume that limal") < oo exists (this is not a strong restriction given the results of the
n€o, '

previous lemma and assumptions (3.3) - ( 3.8)) and define

(3.17) a -2  lima .n)
n4oo 13

We are finally in a position to define the three measure valued processes that interest us.
(Note that the second two of these are signed measures, or distributions.)

X(n)(t) = v1  1  nt) +

(3.18) Y(")(t) = I IZ(t) + 2Z

Wn1)= y(-)(t) + J~ )(n)y(s)d

In general, let )(A) denote the domain of an operator A. Here is th- main result of this
paper:
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Theorem 3.3 Let {(X(")(0), 50,')(0))} have a limiting distribution v E TP(MF x S), and
assume that {IX(-)(0)i 2 } is uniformly integrable. Suppose that (3.3) - (3.8) hold and
that lin-_..•, aj') exists and is finite. Then (X(n), W(n)) ==:. (X,W), where (X,W) e
CMxs,[O,oo) is the unique solution in DMFS,[O,oo) of the following martingale problem
for (A, v):

A = { exp {- (gi, pi) + i (9 2 ,,U 2 )},

(3.19) exp {- (91,,) + i (9 ,12)} (I (-Ag1 - 2 17g, + aj1g9 - 2ia12919 2 - a22g9) 1,1

g, E V(!) , 92 E S(Rd)

where aii and 1h are as in (3.17) and (3.11) and V(½A)+ -D(IA) n Ci(Rd)+.
Furthermore, for each T > 0 and 92 E S(Rd),

(3.20) sup 1(g2, Y(n) (t)) gY~() Hx {?)t} --*0, in probability,
t<T 9,Y')())ep q

as n -- + oo.

The rest of this paper is devoted to the proof of above theorem. The proof will rely on
checking the conditions of Theorem 1.3.

4 Proofs

There are a number of steps involved in applying Theorem 1.3 in order to prove Theo-
rem 3.3. The first of these lies in finding the approximations ý, and ýOn to f(X(-), I7(n))
and h(X(n), W(n)), where (f, h) E A. We do this in the following subsection, denoting the
approximations, in Lemma 4.1, by f (n) and h(n).

Section 4.2 contains a sequence of preparatory lemmas that ultimately show that (X(n), W("))

satisfies a compact containment condition, required in Section 4.3, for showing that (X(-), IV())
is relatively compact in DMF×S,[0, oo), a necessary requirement of Theorem 1.3.

The final requirement of Theorem 1.3, that the martingale problem (A, v) have a unique
solution, is established in Section 4.5 . This proof, itself, relies on a uniqueness result for a
particular non-linear evolution equation, whose proof is relegated to an Appendix.

In Section 4.4 we show that the limit process, which, according to Theorem 3.3 and the
previous steps is in DMFXS,[O, oo), is actually continuous, and that (3.20) holds.

4.1 The martingale approximation

We need some simple notation which will be used later. If for sequence of random variables
{,,} there exists a constant C > 0, independent of n, and another sequence {1,} such that

(4.1) {.I __ C l JIJ, Vn

we shall write that 0, = 0 (0,,). Denote by o(1) a sequence of uniformly bounded random
variables which converges to zero as n -+ oo.

12



Define L by:

(4.2) L = f eC'(R+ xR): ,lim -kWmfwX Vkn'm>O}"0

For simplicity we shall denote by fx, f,,f, f.,, f,.,., f.,, the first and second order partial
derivatives of f E L.

For each f E L, g1 E C(Rd)+ ( where C(Rd) is the set of bounded continuous functions
on R' ), and g2 E S(Rd) define

(4.3) G :, g,, MF x -S R

by

(4.4) G1f,g1,,u(pi, P2) = f ((g1,PI) , (g2,p2)), V(p1, p2) E MF X S'.

Furthermore, define the operator Ai E .C(MF X S') x C(MF x S') with domain

(4.5) V•(A,) Gf, gla,: f E L, g, E D( )+ g, C- S(R')

by

(4 .6 ) m , G f, g ,, 2GU( ), 2) = ((g •, ,m ) , ( 9 2, 142)) ( 7719 1, P )

+ 2f g((g1,P), (g92,P 2 )) (all (g1 )2, ,")

+ f. Q((g1 ,,LI), (g2,P2 )) (a12gIg2,p1 •)

where the aij are defined by (3.17).

Lemma 4.1 For all Gf,g1 ,g2 E D(A1 ) there exists (f,•, h,•) E .A,•, such that

f.(,) =- Gf g ,, X -, ) + O (n) - ,Xn)

h,(t) = AG 1,, 1,, (X(),, W(")) + 0 (n-'IX(")(t)I) + 0 ((n•))- 1 IX(n)(t)12)

+0 ((n))l)- IX(-'(t)l) + o(1).

13



Proof Set
1(")(t) =f ((gl,X (n) (t)), 9g2, W(n•)(t)).

To find ) so that (f(n), h(s)) E An4, we calculate liur. 0 f E [f(")(t + a) - f(")(t).t and

obtain

(4.7) A())(t) 1f ( n ,,,X()(t)F,9 W(n(

+ ") -'[f ((gi, X(-)(t)) + g (g n, w()(t)) +

A(' )E.f g 92, + g2-9

( (F2(n) ((gi, X(-)(t)), (92, W(-)(n)))

+ , ((, () (t)) ,, 1+ X(n) (t) )92,,Y ( (t)) + .s 92

where

(4.8) r1 (")(x, w)(.) = f=(x, w) }2(O~g,('))2

2(-)(,) d
2f, F((, w) n Z (ag 1(.)g 2

Sd

+ 2f,. (x, w)n2 0glH89

(n)
-+ f. (Z, W)"'A,.

n

+f., (Xr, W) L'---AB92)

(n=) (,) 2 d

F2(n)(x, W)() = X W) (!i L2
(4.9)F, g (.) )

n i=1

124.,. (x, w) n2 i=,

14



n, )( 2 d+ f. (X, w) (,2 Ag(. ))2

n
,n)

+ f(X, W) V2 Ag,(.H

n

nn

Expanding f in a Taylor series about ((g,, X()(t)), (92, W(')(0))), we have

(4.10) h")(t•) (IF' ((g,,X(")(t)), (92, W(n)(t)))

+ (92, () ((gi , X ( ,)(t ))(2, W () [t])),

+ f X ((n1,X(')(t)), (9t2, W(")(0))) E [in] 92

+ -fW, ((,1, X(-)(t)), (92, W(n)(t))) E [(2)2] (92,)2

2n

+ I [/:W ((lX n())<(n) n)t) Et [inini] Zgl

+ n ((91, X(•)(t)), (92, W(n)(,)) E [ 1 2] 9192]
+(I 2(n)x ((g,, X()(,) ), (92, W(n)(t))) ['• ](,)

+(2 [f. ((g, ,X(n)(j)) ,, W(n)(,) E [in)] g9,)

+ fw((gl, X(n) (t)),g, W(n)(, ))) E [(ýn)2b],(l,, :)(2 )

"2n (92, 1

+ fw ((g,X )(n) ,(gt , W()(t))) (77(ng 2 y(n)(t)) +n-0 (IX(n)(t)l).
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The error is O(n-'X(n)(t)D), since n-'IZ~n)(t)i is bounded by a constant times XX(n)(t)I.

Recalling that

(4.11) Z X(-)(t) _- ")Y(")(t)

M.(,) (n) _ (n)ý(n)
VI 2 - 2 %1

(4.1 ) Z•O~t) = u n)Y (n)(t) _ ýJ")X (")(t)n
( =") , ( ,() € _ (__) n

VI %2 - 2 "1

.(,n)..(n) .(n) (n,)

(4.13)
(n) (n) E(n) (n)[ n V2 771 E 2 772

1 A- n)2] A (-)

we see by (4.13) that

Hence the terms involving f,, cancel and (4.10) can be rewritten as

1 / n (C)V'((n) , X(n)(t)>, (g, W(")(t))) - (•l XV(n) ( X(n)(t)), (92, W(n)(t)))
2' )F () ) - C(n)F(n

÷ 2f= ((~,,X(9)(t)), <92, W(9)(,))) ?7"gi

+ f~x ((g,,X("'~(t)), ( 2,,W(C(t)-)) (9,)2

(4.15) + 2fý ((g,,X(")(t))M( 2, W(n)(t)()a•'gg,

+ f,, ((g,, X(n)(t)), (92, W(n)(t))) a(•) (9,)2,

1 n (,A"lF"'(~ ((gix(,t)(t), (92, w,-,(,) -(4)'v)" ((,x'-)(,)), (92, wn())))(( M~~V 9 2, -()t) a,2 919

+ f g ((g1 ,X(")(t)), ( 9 2, W()(t))) a ()(92)2

n (2nf, (n) ((9,, X (") (t), , W )(t) )b (9)F 2(n) > g 0(n -X16

+ M9, ))- I) 1 92,W(-)(0)



where
.(-)i,(-)a. fn) +(An)) ) v(,.) 2(n)

(4.16) b ) -- ,1 /2  aj + 1  alij
n (VI 2 - 2 1l )

(and ) k(n)

and aN, a,, are defined in (3.16). Note that, by 3.8 and Lemma 3.1, the b(') are uniformly
bounded in n. Finally, by (4.8) and (4.9), we obtain

(4.17)h(")(t) =- ( f. ((g,, X(")(t)), (g2 , W(n)(t))) Ag1

+ �f , (( n),x(-,), (9) , W•-)(n))) •-g.)

+ ., ((gX((t) (92, W 77)()) a~ 1 g+ f.. ((g1 , x(-)(t)), (92 , W(-)(ta))on) (,)2

+ fo ((g1, X(n)(t)), (n2, W(-)(t))) z (gi)x

+ f 2f. ((g1, x(-)(t), (92, •w()(t))) (¶9 92 2

+ : ((g., X(n)(t)), (92, W(n)(t))) Z (92)2 y())) + o (A-I XC2)oi

By (4.17) it is easy to see that

(4.18 h(n)(t) = 0(nX)(t) l).

Set

2 (f, (x, w)A 92 (.) + f..(x, w)b11)(g,())2

+ 2f.., (x, w) b(12)g1(.)g2(.) + f.., (X, w) b22)92(-)),I

and(4.19) f,-,(,) = 1,-,(t) + (n))-,-' fin) ((g,,,x,-(n)()), (92, w,-,(t))) , y,-(n)t)
To find h(')(t) so that (f(n), h(")) E A, we calculate lim,...oCIf(')(t + t)-
and obtain

(4.20) h ()() - h(,)(,) + o (((n)-') x,,(t)2) +o((,(n))-1l Ix,,i)l

- (J(-) ((g 1 ,X(")(t)), (g2, WOn(t))) ,Y("-)(t))
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Combining terms we obtain the desired result.

Conditions (1.6)- (1.8) now follow immediately from the following bound.

Lemma 4.2 E[supt<T IX(")(t)12] is uniformly bounded in n for each T > 0.

Proof From (4.7) we have that, for all f > 0,

(4.21) Mý('(t) =- exp f{-,E Ix() (t)121

- Ao (n'• Eun [exp {I, (IX(n) (s)l + L - exp {-E X(_) (s.)j2}] Zi¶")(s))

(A2 )En [exP { -C (IX(.) (s) I + kn)} - exp {-2 IX(n) (s),2}] , ds

is a martingale. Hence

- E [I -_xp {-ep JX() (t)21}]

- 1-E[eXp{-CIX(•)(0)12}]

-E[jt ,(4')En [exp {_.C (jXn 1_)21+ - exp {f fX(_) (S) 12} ,~)S

+ (~nE~. r _C (IX~n (S)1I + I x - x~ (S)12] ( Zn) (S))

+ E [f ,n) [exp_ {_-c I (sn, Zj2}

=I E [~ Xn) (01211p{c(Ix sj+ -Ix~ 51)}

+ Exp {- Ixp(,) (S)12}

x Eln [1 - exp { (I(I (,)I + )2_ X I(n) (S) 12)}] ~Zn)8(s)
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+ E ft (~) xp{EI(n) XsI}c. [(xn) (sj+~)2 - X(n) (S)12]Zn)S+ A exp {/E IxJ( ( )I2EEýn [(Ix + lx• '] ) Is

[1x n (C0)12(S1]X+ 
rl

+ 2 )epJEn IX n (~
n8) 2ds]

2 [[I X(•e(n e 12]

9 [CIxn_ (8 )12]1 ~ j [ j(ýn )2 ()I]

+ E [exp {_E jxln) (s)12} lx(, (sil] ds.

Recalling that IX("•)(t)Jexp {,-,~1•t} is a martingale (c.f. [1]), (4.22) can be rewritten as:

(nE[) ~)(01] x {i2]} ZI(n) (0))

+2 EA )j [expI I { ý- IX(') (s)12 IX~ (I12

+n [n 2cvAn ) j [exp {Z2 Ix(S ) (s)1}j])()2

By (4.23) and Gronwail's inequality we obtain

< ( E [jX(n1 ) (0)12] + EC I 'E [jx(n) (0)11 e

[I9



Dividing by c and letting c 1 0 gives

(4.25) E [I X N (t)j12] :5 (E [IX('_) (0)12] + C t exp f{ti ()t}E [IX(-) ()I]) exp )(tl

That is, E[lX(n)(t)12 ] is uniformly bounded in n. Once again using the martingale properties of

IX(n)(t)l, we obtain, by Doob's inequality, that E[supt<T IX(n)(t)I 2] is also uniformly bounded in
n for each T > 0.

4.2 Compact containment

Definition 4.3 Let (E, r) be a completely regular topological space with metrizable compacts. Sup-
pose that X(n), n = 1,2,..., is a 5'" -adapted process with sample paths in DE[0, oo). We say that
the compact containment condition holds for {X(n)}, if, for every c > 0 and T > 0, there exists a
compact set r•,T C E for which

inf P {X(")(t) E 1,eT for all 0<t<r} _> 1-£.

In the following lemmas we shall denote •=1 (8,g) 2 by (ag)2.

Lemma 4.4 E[(g2 , W(n)(t)) 2] is bounded uniformly in n for each 92 E S(Rd).

Proof It is easy to see that for each c > 0

exp {-E (/U 1 2 + (g92,0 2)) } E D(A,).

From (4.7) we obtain that

M( 2)(t) = exp {-. (IX(n)(t)12+ ( 9,,I2 (+)(t))2)

(4.26)

+ f [ex {-e ((IX( )(s)I + - + ((g W )(s)) + (gg,)) )}

- e x p { -s (I X ()) (s2 + (g,,W ( n)(t)S) } ] , Zn") (s ) )

+ (Iep {- (IX(_' (S)12 + (g2, W(n)(s)) 2) }

( w(n)(s 2n) () 2 2(n)
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1+ 
t

+ - [exp {~ (X(-) (S)I + (( 92, W(n)(S)) + 9 )}

oef{ (Ix(n)s ()12 t exi W(n)(t )) 2)} s ,hn)()S))
(2W (n) (s))p {,E (I X'n) (S)12 + (gW(n)(S)) 2 ) ('i Yn) ()

is a martingale. By simple calculations (as in the previous lemma) we obtain that

E [C(92, W(n) (t)) 2 exp 1-c O(lx() (t) 12 + ( 92, W~n)(t)) 2) }]
< cE Xo (n)~ (0) 12)] + cj t E [0 (IX(n) (S)12)] ds + f JE [o (1fX(n) (s)f)] d

+eti e E I ( (I( (S)12 + (2W( ($)) 2 ) }(cW(n)o(S)) 2g] ds

EBn~(t) + 12 0JtE [e exp {-C (jX(') (s)12 + (g2 ' W(n) (S))2) 1(92, IV(n) (S))2 ] ds,

where the B[(t) > 0 are bounded uniformly in n. (This follows from the uniform boundedness
of E[sup5 <t IX(n)(S)12I). Hence there exists a function B such that B(t) Ž Bn(i) for each n. By
Gronwall's inequality we obtain

E[(92, W(n) (t)) 2 exp { -E (jxP') (t)12 + (92, W(n) (t)) 2) }] :5 B,(t) exp { t}, V c> 0.

Letting c 10 we find, by monotone convergence,

(4.27) E [(92, W(n(t))2] :5 Bn(t) exp{f t} : B(t) exp{it},

so that E[(9 2 , W(n)(t)) 2J is uniformly bounded in n.
U

Lemma 4.5

(4.28) (9 2 , W(n)kt))- 'It2, y(n)(s)) d,

is a martingale for each n and 92 E S(Rd).

Proof Note that exp{-cjplI~sin(,E(g2 ,qs2)) E VD(A 1 ). Define a martingale MP'(3)() as in the
previous cases:

M!(3)(t) =-exp (_( lX(n) (tel) sin (2, -)t)
(4.29)

it jg(ExP{ JX(n) (.9)I1 (cs ((g,()(S))) n)Ag
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sin (C(g, w(n)(s))) (CEs)) 2(0)2) ,Z(n)(,))

+ (E xp_{E JX(n) (S)} (co (I9 W~n)(s))) (n) Ag

+ exp CosI(R ~1 i) i (C( 92, Wý2 (s) +A922

n

- e { (- , Ix (s)1}sin (2 (, (0()(2)))], ,2(n))

+(4fln)Elq [eXp{f _ (JX(n) ($)I + sn (( 2 w4s) i2 )

- exp -C JX(n) (s)1j sin (•(g 2 , W(-)(S)))] , Zr(S))

+ exp{- n (s) I Iosi (C (92,W(n) (S)))JC J)(g 2,yZ(n)(S))s

Let

(4.30) M (3)M(j) -=lirMP(3(t)

9 ( 2, W(n)(t)) \()E- / [1 2 Z~n)(S))

+~~~~ ([2-]~ 92,g2 Z)s)

+ ,2(nf)(92, y(n)(S)) d8

= (2,W(n)(t)) If tf(A9 2, y(n) (s)) ds,

where the last equality follows by definition of y(n). The above limit exists almost surely. On the

other hand, it is easy to see from (4.29) that

92,W1(t) j(2,+ + f , + J1 I(u) (8)1(2, W(n)(S)) I + C2  - (s)I ds

where C1 > 0 and C 2 > 0 do not depend on c. From the uniform boundedness of E[IX(n)(t)t 2 ] and

E[(g2, W(n)(t)) 2], we obtain the uniform integrability of IM(3)(t)/EI, which means that convergence
is in Li. Consequently M(3 )(t) is a martingale.

Lemma 4.6 E[supt<T (g 2,W(n)(t)) 2] is bounded uniformly in n for each g2 E S(Rd).
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Proof From the previous lemma we have that

W-)j M(3)(t) + jt1 2 y(n)()ds

Then

£ [su (g2w.)(t))2] [SUP (M(3)(t) + 1J (z ( )(s) s)

t <T _<T
<2E SU (M(3)(W))2] + 2E [sup (I t (Ag 2 , Y(-) (S) ds)]2

+ ( IIAg 2112T 2CE [sup x(' 1(t)2]

2 Lt<_r

where C is the constant such that

K I , ( Y(") (0))I2 •_ C IIA9g2 112 X() W ,

Finally we obtain that

E[SUP(g2, W(n)(t) )2] S 16E [(9 2, W(n) (T))2] + I;gIIN 2 12T 2CE [SUP JX(n) (t)12]

From Lemmas 4.2 and 4.4 we obtain uniform in n boundedness of E[supt<T (92, W(n)(t)) 2]-

Lemma 4.7 For each g9 E V(½A)+, 92 E S(R ), the processes (gl,X(n)(t)), (9 2, W(')(t)) and

((g 1 ,X(,)(t)), (g 2,W(n)(t))) satisfy the compact containment condition.

Proof The proof is immediate by the uniform boundedness of

E [SUP(g 2 , w(n) (t))2] E [sup(gl,X(n)(t))2]

and Chebyshev's inequality in the case of the processes (g 1,X(n)(t)), (g92 , W(n)(t)). In the case of

the process ((g,,X(n)(t)), (g2 ,W(n)(t))) the result follows from the fact that the product of two

compact sets is compact in the product space. U
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4.3 Relative compactness

We now check the relative compactness of {(X(-),W(-))}. En passant, we shall show that X(')
converges weakly to super-Brownian motion; i.e. the process with values in MF which is the unique
solution of the martingale problem for A* with

A- = lexp{-(gl,ju)} exp{f- (gl,,u)}ý-ilhgl+½!all (gl)' -½Agl,.) : giE ( +•

Recall that D(½A)+ - (½A) n C1(Rd)+.

Lemma 4.8 The following sequences of processes are tight for each gi E D(½A)+, 92 E S(Rd):

1) 1{((g1, X(n)(t)), (g2, W(n)(t))} in DR2 [0,oo),

2) {(g1 ,X(n)(t))}, {(g2 , W(n)(t))} in DR[ 0,o),

3) {(gl, X(n)(i)) + (g2 , W(n)())} in DR[0'O0).

Proof 2 and 3 are simple corollaries of 1, which we now prove. By Lemma 4.1 we obtain that,
for all G1 ,9 ,,92 E D(A1 ), we can choose the processes f(') and h(n), (f(-), h(n)) E An such that

limE supl f(n)(t) - f((gl X(n)(t)), (g 2,W(n)(t)))j] = limE [suPO ((,72n))- X(n)(t)I)nloo LhT '] nloo h.tT

"- 0.

The last line follows from the uniform boundedness of E[supt<-T X(n)(t)Il. Furthermore,

+ supE [sup 0 (.-1 (xn) (t)D]

+supE [suP0 (n- I X(n)(t)j)]
n Lt<_r (

+ supE [suP 0 ((n,7))-1 IX(n)(t)2)] + sup o(1)

< 00,

where the final line follows from the uniform boundedness of E[supt<T IX(n)(t)12], and the bound-
edness of functions in the range of the operator A, . Since this holds for each choice of gi, g2, and

by Lemma 4.7 we have compact containment, applying Theorems 3.9.1, 3.9.4 [51 now completes the

proof.

Lemma 4.8 and Mitoma's theorem [10] immediately yield

Lemma 4.9 {W(n)} is a tight sequence of processes in Ds,[O, o).

Lemma 4.10 {X(n)} converges weakly to super-Brownian motion.
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Proof We can take 92 = 0 and thus obtain A C C(MF) X C(MF), where A C A1 is defined as
follows:

D(A) = linear span of {exp {- (gj,p)}, gi E -5 (2

Aexp{-(g1 ,p)} = exp{-(gi,p)} -7(•gi+ 1 all(gl)2- _1Ag, .)

By Theorem 2.4 [14] and results of Perkins [12] the closure of A generates a strongly continuous
contraction semigroup on C(MF) (with corresponding super-Brownian motion X) and D(A) is a
core for X. By Theorem 3.2.6 [4] the set of functions {exp {- (gl,p)}} strongly separates points in
MF. Thus, all the assumptions of Theorem 4.8.2 [5] are satisfied and we are done.

Lemma 4.11 {(X(n),W(n))} is a relatively compact sequence of processes.

Proof We check the conditions of Theorem 4.6 [7] (Jakubowski's tightness criterion). fX(n)}
and {W(n)} are tight. This implies that the compact containment condition holds for each of these
processes and by the same arguments as in Lemma 4.7 it holds for the pair {(X('), IV(n))}. Define
the family of functions F : MR X S' - R by

Fg1,92(•,U 2) = (g 1,101) + (g2,P2), 91 E D(½A)+, g2 E S(Rd).

This family separates points in MF x S' and is closed under addition. By Lemma 4.8 the sequence
{f(X(n), W(n))} is tight for all f E F. Jakubowski's conditions are satisfied and the proof is
complete.

Theorem 1.3 and Lemmas 4.11, 4.1 now imply

Corollary 4.12 Each limit point of {(X(n), W(n))} is a solution of the D MFxS,[O, o0 ) martingale

problem for (AI, v').

4.4 Continuity of the limit process

Throughout this subsection we shall denote by W one of the limit points of the sequence (W )},
and all results are obtained for each limit point of {W(n)}. For simplicity of notation we shall
denote (g, W(t)) and (g, X(t)) by Wt (g) and Xt (g) respectively, while the increasing process of
each martingale Mt will be (M),.

We shall treat only the continuity of the process Wt, since the continuity of X follows from the
fact that X is super Brownian motion. Using this result we shall prove the last part of Theorem 3.3,
viz, that (g2 ,nY(f)(t) - Y(n)(0)exp {- ()t1) converges in probability to zero for each g2 E S(Rd).

Lemma 4.13 For each 92 E S(Rd), Wt (92) is a square integrable martingale with increasing
process

(4.31) (W(9 2)) t a22X (2)d
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Proof The uniform boundedness in ra of E[(Wt(n)(g 2 ))2] (obtained during the proof of the compact
containment condition) immediately gives the existence of second moments of Wt (g2). We now use

the same "trick" as in Lemma 4.5.

(4.32) MCM)(t) = exp(-IXtI)sinR(CJVt(g2))

- Jc2 exp -clXI} (sin(cW . ( 92 )).- IX, I

Cos (_EW (g2))al2X5 (92)- sin W_ (9 (g2 ))-x 8 (.,2)

- Eexp{-jIXI}sin(EWS(g 2 ))71 IXsI ds

is a martingale. Since

(4.33) limMl W(t) =W1 (9 2) a.s.,

the dominated convergence theorem gives that V I (g2) is a martingale. Now note that

(4.34) Mý(2 )(t) =- exp{-,IXtI)sin((,Wt g2)2}

- cexp {-,E Ix. sin ( 2(ge)2)a

-2Ec os (4I415 (92))W (9 2 )al2 X5 (92) + COS (CW5 ()2 )a2X. 2~

-2W (92) sin ( .w (92)a22X. 2

- sin (IEW. (92 )2>71 IX.i) ds

is a martingale. Under the same arguments as in (4.33)

2 a 2f g2a M(2)(t)(4.35) W- (92) - a 2 2 X, 2ds = lrm a.s.

is a martingale and so (W (g2))% = fo a2 2X, (g2) ds.

Lemma 4.14 Assume that Wo E S'. Then, for each 92 E S(Rd), Wt (92) is a continuous martin-

gale.

Proof Define

(4.36) tK (g2 ) E W9 (g2 ) - K, for all K E R.
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Once again we use the same "trick".

is a martingale. Under the same arguments as in (4.33) we obtain that

M(3)(t) exp {(ii(9)2 -W (9)2)1

- jexp{- w8"(g) 2 _ ý (92 )2) 1 ((2ý1V(9)- 1 ) a 22X )d

= limM•3 )(t), a.s.

is a martingale. By Corollary 2.3.3 from [5] we have that the process

M()t)= exp {. I~' 9) -W ~(92) FV (~~( 2 
- X, +) a 2 cX3 ( (9) ds}92

+ x j (2FVK (92 )2 _-1 Woh(92
2 ) + 77 I2 X, 1~) ds-2I 21'()2X(~)dJ

is, at least, local martingale. By setting U2 = m2g2 in the above, we see that, for every m E R,

(4.37 ) (t exp {I- [(FWK (92 )2 -FVOK (922)1 )-ja 2 a(~ s

- 2 -- 4a )(2)21x (g2)2 (g}
(2fV 1) a2KX d

is a local martingale. By Lemma 4.13

Wexp (V' (92 2 - W ofý (92) 2 2 X ~)d

is a martingale. The continuity of this martingale derives from the result given in the following

lemma [13]:

Lemma 4.15 Let X be a local martingale such that Xo = 0 and A be a continuous increasing
process such that Ao = 0. If exp {kXt - (k2/2)At} is a local martingale for every k E R+ , then X

is continuous and At = (X)t.

Thus, by (4.37), we have that WI' (g2)2 - WoA" (92)2 is a continuous submartingale. This is true
for every K E R and, thus,

ft" (g9) 2 
- Wo (g2)• = (wK (92)- K)2 - w, (g•) 2

( K 2 - 2KW -(g2)

is a continuous process for each K, which implies that We (gs) is continuous. e

Lemma 4.14 and Theorem 1 [91 immediately yield
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Corollary 4.16 Wt is a continuous process taking values in S'.

Corollary 4.17 For T > 0, suPt<T 1(g2,Y(")(t)) - (92,Y(')(0))exp- converges to zero in
probability for each g2 E S(Rd).

Proof The proof is completely analogous to that of Theorem 9.2.1(b) [5], using the fact that, for
each g2 E S(Rd), Wt (92) is a continuous process.

4.5 Uniqueness

In this subsection we shall prove that the martingale problem for A, introduced in Section 3 as:

(4.38) A= exp (gi, p) +i(92,P2)},

exp {-(g,,l) + i (g2,P2)} (I (-Ag, - 2771g, + alg- 2ia12gg2 - a22g•) ,2i)

91 E 5(!A)+, 92 E S(Rd)},

has a unique solution.
Throughout this article we worked with real-valued functions. Now for simplicity, we switch to

complex-valued functions. We obtained in Corollary 4.12 that all the limit points of {(X('), W('))}
are solutions of the martingale problem for (A,, v). By the obvious fact that

{ exp{-(g1,p0)}sin((g 2 ,u,2 ))Uexp{-(g1,,P)}cos((g2 ,9 2 )): g1 E D(A)+,g 2 E S} c D(A,),

we obtain that all the limit points are also solutions for (A, v). Thus, in order to prove weak
convergence, it is sufficient to prove uniqueness for (A, v). Let (X, W) be any limit point of
{(X(-), W(-))}. For simplicity, in the next two lemmas we shall use the notation introduced in
Section 4.4; that is (g, W(t)) and (g,X(t)) will be denoted by Wt (g) and Xt (g), respectively.

Lemma 4.18 For each g9 E D(½A)+, 92 E S(Rd), the bracket process of Xt (g') and Tt (g2) is

(4.39) (X(g0),W(g2 ))t = X .(a1 291g 2) ds.

Proof By 1t6's formula

exp -X (g,) + iWt (g2 )} =

exp {-XO (91) + iWo (g2)} + j0 exp {-X. (91) + iW. (g2)}X. (-g1 -1 Ag) ds

+ 1t exp {-X. (gl) + iW, (g2)}d((-X(g) + iW( 9 2 %) + Mt,

where Mi is, at least, a local martingale. Recall that

exp {-Xt (g9) + iWt (92)}

- exp {-X. (gl)+ iW.( 9 2 )}XX (-2rhg, - Ag, + al,(g,)' - 2ia12glg2 - a 22 (g2)2) ds
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is a martingale and

XX(g)). = jx(aig') ds, Vg E D( ),

(W W) t = j0 x, (a2292) ds, Vg E S(Rd).

Combining the above result with the fact that

(-X(g1 ) + iW(g 2))t = (X(g1))t - (W(g2))t - 2i(X(9 1 ),1W( 9 2 )).,

we are done. a

Let C0 (Rd) be the set of continuous functions tending to zero at infinity. Introduce the additional
notation

(4.40) C/ (Rd) = {g g=g1+ i92 : g E C1 (Rd) 9 2 ECo (Rd)}

(4.41) C' (Rd) 9 {9: E CI(Rd) , 91 E V(IA) +, 92 E D (I A) fl Q' (Rd)}

and the operator

(4.42) 1= exp-(gIILI) + i(92042)},

exp 1- (g1041) + i (g2,Ys2)} (I (-zAgI - 2771g, + a11g2 - 2iaI2g1g2 - a22g2) ',I

gi E C(Rd )+ g92 E S(Rd)}.

Then we have

Lemma 4.19 (X, W) is a solution of the martingale problem for (A, v) if, and only if, it is a
solution of the martingale problem for (A, v).

Proof Since A C A, if (X, W) is a solution for (A, vi), then it is also a solution for (A, v). Let
(X, W) be a solution for (A, v). For each g9 E C'(Rd)+, 92 E S(Rd), we obtain, by It6's formula,
that

exp {-Xt (g1) + iWt (g2)}

exp{-Xo(gi)+iWo(g 2)}+ + exp{-Xo(g1) +iW5 (g2 )}X.(-??g1-½Ag) ds

+ 1jexp{-Xo(gl) + iW.(9 2)}d((-X(gi) + iW(g 2))) + M,

= exp{-Xo(gI)+ iWo(g 2)} + 0 exp{-X.(gl) + iWo(g 2)}

x X. (-2jlgl - Ag, + a.u(g1 )2 - 2ia1 2g~g2 - a 2 2(g2 )2) ds + Mt,
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where the second equality follows by previous lemma, and Mt is, at least, a local martingale. But

all the terms in the right and left hand sides are bounded, so that Mt is a martingale. I

In the proof of uniqueness the following lemma will play a crucial role:

Lemma 4.20 The nonlinear evolution equationJOU(t) = _½a1nU(t)2 + U(t)h + ½AU(t) +2iaiU(t)g 2 + ½a22 (g2 )2

(4.43) at2

I U(O) = g ,

where gi E C(Rd)+ , g2 E S(Rd), has a unique strong solution on R+ , such that U(t), OU (t) 1Ot,
and ½AU(t) are continuous functions from R+ to C(R d), and U(t) E CI(Rd)+ for each t E R+.

Proof Appendix.

Lemma 4.21 If (X(t), W(t)) is a solution of the martingale problem for (A, v) in DMFxS,[O, 0),
then, for each g9 E Cý(Rd)+, T > 0,

(4.44) exp {- (U(T - t), X(t)) + i (g2, W(t))}

is a martingale for 0 < t < T , where U(t) is given by the unique solution of (4.43) with
U(O) = g1 E C(Rd)+.

Proof Define

(4.45) F(gl,g 2) = 7791 - !a11 (gl)2 + ia1 2g9g 2 + ½a22 (92)2.

Let X(t) M (X(t),W(t)) be a solution of the martingale problem for (A, v), V E P (MF X S').
Define

(4.46) u (s,X(t)) = exp{- (U(T - s),X(t)) + i( 9 2 , W(t))}, VO <s< t < T.

For each (01,10) E MF x S' we have

(4.47) Ou(s,(P1,P2)) = exp {- (U(T- s),pj) + i(g2,P2)} ( 1

Hence

= E[ [t2 exp{- (U(T - ), X(t2 )) + i(92, W(t 2))} (OU!) , X(t 2)) ds -t

Fix 0 < t1 !5 T. Since gi E CtRd)+, we have U(TZt 1 ) E C Rd)+, for every 0 < tj _ T. Therefore,

by the definition of the martingale problem for (A, v), we have that

exp {- (U(T - tl)g1, X(t)) + i (g2 , W(t))}

-ftexp (U(T - ti),X(s)) + i (g2, W(s))} x (-F(U(T - tl), 9 2 ) - ½AU(T - t,),X(s)) ds
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is a martingale for 0 < t < T. Define the function w by the following:

(4.48) E [u (t,, f(t,)) - u(tX,) .j]

= E[exp{- (U(T - ti),X(t 2 )) + i( 9 2,W(t 2 ))}

-exp {- (U(T - tl),X(tl)) + i (g2, W(tl))}[ .FtI

= E [4`2exp{- (U(T - ti),X(s)) + i(g2 ,W(s))}

× (-F(U(T -it), 9 2 ) - ½AU(T - ti),X(s)) dsI.ti]

= E fj w(t,,s,X(s)) ds l , VO_<t 1 <t 2 <• T<c

It is easy to check that all conditions of the Theorem 4.3.4 [5] are satisfied and hence

(4.49) u (tj(t)) - ft {V (sX(s)) + w (S' sj (s))}I ds

is an 'tY-martingale. Finally, substituting the definitions of u, v, w we obtain the desired result. g

Theorem 4.22 The martingale problem for (A, v) has a unique solution.

Proof Let (X(t), W(t)) be any solution of the martingale problem for (A, v), v E P (MF X S').

Take 92 E S(Rd) and g9 E V(!A)+. (Recall this means that g9 = gi1 + ig12 E CI(Rd)+, g12 = 0.)
Then by the previous lemma, setting T = t, we obtain

E [exp {- (gi ,X(t)) + i (92, W(t))}] = E [exp {- (U(t),X(O)) + i (g2, W(O))}], VO < t < 00,

where U(t) is the unique solution of (4.43) with U(0) = g1 . Thus, by Corollary 1.9, we obtain

that that any two solutions of the martingale problem for (A, v) have the same one-dimensional
distributions. By Theorem 1.4 the desired result follows. I

Remark 4.23 The proof of Theorem 3.3 is now finished, since, by Corollary 4.12 and Theo-
rem 4.22, all the conditions of Theorem 1.3 hold.

Appendix: The solution of a particular non-linear evo-
lution equation

Lemma A.1 The nonlinear evolution equation

I DU(t) = - alU(t)' + U(t)?+ U + + ia 1 2 U(t)g2 + 1a22(92

(7r) Ot

U(O) = gi,

where g1 E CjRd)+, g2 E S(Rd), has a unique strong solution on R+ , such that U(t), OU (t) 10t, ½AU(f)

are continuous functions from R+ to C(Rd), and U(t) E CtRd)+ for each t E R+.
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Recall that CIRd)+ is defined by (4.41).

Lemma A.2 For each g9 E CIRd)+ there exists a unique strong solution of (7r) on [0, tma,),

where t.,. < .00 Moreover, if tMa1 < 00, then lim IIU(t)II = 00.
tltmax

Proof The proof was outlined by Perkins [12] for the case of real-valued functions. In our case
the proof is completely the same (c.f. Theorems (3.13 - 3.15) from [12]). The more complicated
part of existence of a solution without explosion will be given here. That is, we shall show that
t max = 00.

Before starting our proofs we introduce several lemmas from [12].

Lemma A.3 Let X m be the super-Brownian motion given by the unique solution of martingale
problem for (A,.,5), m E MF, where

A= exp{-(g,p)}, exp{- (g,p)} -ag + ½ (ag)2 -Ag, P gE (A)+ , a,a E R}

Then for each 0 : [0, 00) x Rd - R, such that tO(s), •b (s)/Os, !AO(s) are strongly continuous
functions from [0; T] to C1(Rd) we have
(A.1) X" (1b(t)) = m(0(0)) + X' ( Os + ½Ab(s) + aOb(s) ds + Zt (s),

where Zt (0t') is the martingale with increasing process

S= (V(5)2) ds.

Lemma A.4 The unique strong solution of the nonlinear evolution equation

aV (t) •-a2V(t)2 + aV(t) +½V(t)at2

V(o) = g E(! A)+

satisfies V(t) E C1(Rd)+ for each t > 0.

Let

(A.2) U(t) = Ui(t) + iU2(t)

be the unique strong solution of (r) on [0, t....), where UJ and U2 are, respectively, the real and
imaginary parts of the solution. We can see from (ir) that that U, and U2 satisfy

Oul (t) -(-aj1U()t)= + Ul(t)rh + ½AU1(t)

(A.3) + 1ajjU2(t) 2 - al 2U2 (t)g 2 + 1a22 (g2)2

oU(o) = g,

a' OU2 (t)
(A.4) Ot = -allU 1 (t)U2(t) + U2(t)171 + IAU2(t) + ai 2Ui(t)g2

U2(0) = 912.
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Let us define for each h, f E "C(Rd)

(A.5) F(h,f) = lallh2 - al 2hf + la 22f 2 .

It is easy to check that

(A.6) F(h,f)(z) 2 0, Vx E Rd.

Lemma A.5 Under the definitions (A.3), (A.4) U1(t) E CQ(Rd)+, for all t < tma,.

Proof We shall prove the result by contradiction. Assume that there exists a t < t mz, such that

infzeRd U(t, z) < 0. Define

(A7 t" =_ inf I't < t,,a,, : inf U(t, x) < 0.
t ~zERdJ

The solution U(.) of (1r) is continuous on [0, tna:), and g9 E C(Rd)+. Thus t' > 0, and, for each
S < to,

(A.8) U, (s) E Ci (Rd)

Define 0(s) = U1(t* - s). Obviously we have

CS = -- u l=t.*- I

Now let X' be the super-Brownian motion which is the unique solution of the martingale problem
for (A*, ,m), m E MF, where

A*= {exp (- (g, 1,,u)), exp {-(giiq4p} (-hi~gll + !all (g, )2 
- Agi,i I gIIL1 E A

By Lemma A.3, and equations (A.3), (A.5) we obtain, for all t < to,

xtM (v•(t" - 0))

= m(U(t)) + 0x (,,,U, (u) +x.&u1(t -s)+ lUI(t - ds+Z.(k)

m ( + (aj Udt)2) ds- - (F(U2(T- s),g2)) ds + Zt(b),

where Zt (0) is the martingale on [0, t1] with increasing process

=Z 1 1 ja X. (U1(t'- _S)2) ds.

Rearanging, we obtain

-X•n (Ul(t" - t)) - Xn (F(U 2(t" - s),g9)) d9 -m(UV(t')) - Zt (0) - (Z (0)),
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and

(A.9) exp {-X-' (U1 (t - t)) - oX. (F(U 2(t* - s),g2)) ds}

= exp {-m(Ul(t*))} exp {-Z, (,) - ½ (Z(•b))t}.

Note that exp {-Zt (0) - ½ (Z ('))t} is, at least, a local martingale on [0, t], but that the left hand
side of expression (A.9) is, by (A.6), (A.8), bounded and so is, in fact, a martingale. Setting t -t
we obtain

(A.10) E [exp {-X, (gu) - jX' (F(U2(t* - s),g92 )) ds - exp {-m(U1 (t))}.

On the other hand, by (A.6),

(A.11) E xp {X•.(gll)- xn(F(U2(tr - s),g 2 )) ds <_ E[exp {-Xt' (g,I) ds}].

Define V(t) to be the unique strong solution of
SOV (t)_J (t) aii V(t)2 + ,7 iV(t) + ½AV(t)

V (o) = E 5 (2A)+.

By Lemma A.4 we have that V(t) E CI(Rd)+ for each t > 0. By standard arguments from the
theory of superprocess we find

(A.12) E [exp f-Xf' (gll)}] = exp {-m(V(t*))}.

Combining (A.10), (A.11), (A.12) we obtain that

exp {-m(Ul(t*))} <_ exp f -m(V(r*))}.

The above expression holds for all m E MF. Therefore, setting m = b,, we obtain

exp {-Ui(t*,z)} < exp {-V(t',x)}, Vx E Rd

and hence

inf Ul(t',z) > inf V(t*,x).
XERd zER'

But infoeRd V(t*, z) > 0, so that infERd Ui(t*, x) > 0, which is a contradiction.

Lemma A.6 There exist constants C1 , C2 2! 0 such that

(A.13) 11U2(t)1 <_ Cjexp{C 2t}, Vt < tma.

and hence, if tmQZ < 00, then

(A.14) lim sup 11U2(t)I :l C< exp {C 2tm,.z}.
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Proof Consider two cases

(1) ,71 > 0

Define

(A.15) U2(t) = U2(t)exp{-i77t}, t < tmax.

By (A.4) we obtain

O12 (t)- S(-allUl(t)U2 (t) + U2(t)% + 1AU 2(t) + al 2 UI(t)g 2)exp {-?77t)at

- m U2 (t)exp {-rlit

= -alI U1 (t)U2 (t) + ½AU2(t) + al2UV (t)g2 exp 1-m1 t}

- L1(t) (-allU2 (t) + a 1 2g2 exp f-7,)t}) + ½A02(t), t < tmar.

Define

Ci = 2imax (1191211 1~ (12292
IIall /

Assume that there exists to < tma=, such that

s 112(t)I1 > Cl.
t<_to

Choose t' such that

By choice of C1 , we have that t" > 0. For all t < t,,,a, U2(t) E S(Rd), so that there exists a
z° E Rd, for which

IU2(t)I*.)1 = 1
Assume, without loss of generality, that z" is the point of maximum of U2 (t) (in the case of a

minimum the proof is analogous). By the previous lemma, U!(t) E C1(Rd)+, for all t < tma,,. By
the choice of C1 we obtain that

Ul(t*,zX) (-anUF12(t*,z°) + a12g2 exp f-71t)) < O.

Since z° is the point of maximum of U2 (t*), the positive maximum principle ([5], p.165) implies
that

IAU 2 (tX) < 0.

Hence

U2 (t', z)<< 0.
at3
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Recall that t" > 0, so that there exists a 1 < t* for which U2(i,zx) > U2(t,x-). But this contra-

dicts (A.16). Hence we obtain that

sup. 110(t) <C",
t~tma

and by the definition of U2 we have

(A.17) 11U2 (t)II _5 C1 exp {i77t}, t < tmax,

which was what we wanted to prove.

(2) i7 <_ 0

The proof is the same, the only difference being that we need not introduce U2, as in the previous
case. a

Proof of Lemma A.1 Asume by contradiction that tmax < o0. It is well-known [11] that if
U(t) is a strong solution (o, (7r) on [0, tmazr) then it is also a mild solution of the following integral
equation :

u,) -= St)g! +j,,- s)(-•oiU(s)' + U(s)771 + ial2 U(S)92 + la 22 (92)2) ds,

where S(t) is the semigroup generated by !A. By (A.2), (A.3) we obtain

(A.18) U1(t) = S(t)giI + j - (a2 ) ds

Recall that, by Lemma A.5, we have Ui(t) E C(Rd)+ for all t < i,,. Thus
•t •ts _

<u(t) = s(t)g+ S - s)( UI(s)2 + U(s)) ds + S(t - s)F(U2 (S), 2 ) ds

+ S(t - S)(UI ) + S - s)F(U2 (s),g 2 ) ds

-< IOguII + I'hj IIUi(s) 71 ds + isuplIF(U2(a),g2)1I
a<t

Finally, defining C = tmaz sup,<t,,. 1 1 IIF(U 2(s),g 2)II, (C < oo by Lemma A.6) and K = IIgiiII + C
we obtain

Z'
(A.19) IllI(t)II !5 K + I'I JIIUi(s)II ds, Vt<t,,,.,

and by Gronwall's inequality we have that

11 U1(t)l _K /exp{I t}1, V t < tm,,,.

This implies that

(A.20) limsupIJUI(t)II !5 Kexp(Iv7lthlj3 < oo.
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Combining the above result with Lemma A.6 we obtain

(A.21) i'M IjU(i)Jj < limsup IIUI(t)II + lirn supP U2(t)II < 0c,
tttmaz tttmoz

which contradicts Lemma A.2. Hence t,im, = oo, which finishes the proof of the lemma.
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